      LOYOLA COLLEGE (AUTONOMOUS), CHENNAI – 600 034
    M.Sc. DEGREE EXAMINATION - MATHEMATICS
THIRD SEMESTER – November 2008
    MT 3805 - ANALYTIC NUMBER THEORY

               Date : 07-11-08 
Dept. No. 
  Max. : 100 Marks

    Time : 9:00 - 12:00                                              
ANSWER ALL QUESTIONS

I    a)  Prove that if the integer 
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 has r distinct odd prime factors , then  
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     b) Prove that the identity function 
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 is completely multiplicative.             

         (5)

     c)  i) Write the relation between 
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 and 
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.
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[image: image7.wmf]     ii) Let the arithmetic function
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 be multiplicative. Then   prove that
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 is completely

             multiplicative if, and only if 
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                                [OR]

    d)  Prove that the set of all arithmetic functions f  with f(1)
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0 forms an abelian group

         under Dirichlet product                                                                                         

     (15) 

II   a)  Write a note on the test for divisibility by 11.

                                [OR]

     b)  Write a product formula for 
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c)  If f has a continuous derivative on the  interval 
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     (15)

                                [OR]

     d)  If 
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      i) 
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     ii) 
[image: image18.wmf](

)

.

0

   

if

    

1

1

³

+

+

=

+

>

å

a

a

a

a

a

x

O

x

n

x

n

                                                       


  (7 +  8)                                

III   a) If 
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, then prove that the linear congruence 
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 has exactly one        

           solution.

                          [OR]

      b) State and prove Wolstenholme’s  theorem.                                                            

         (5)

      c)  i)  State and prove Lagrange’s theorem for polynomial congruences.  

            ii)  Let  
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 is composite.                                                              (7 + 8) 

                                [OR]

      d) i)  Solve the congruence 
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(mod 120).  

          ii) Write any two properties of residue classes.                                              


  (7 + 8)

IV   a) Write a note on  quadratic residues and give an example.

                                [OR]

       b) Prove that Legendre’s symbol is a completely multiplicative function.               

         (5)

       c) State and prove Gauss’ lemma. Also derive the value of m defined in Gauss        

           lemma.

                                [OR]

       d) Determine those odd primes  p for which 3 is a quadratic residue and those for    

           which it is a nonresidue.                                                                                   

      (15)

V    a) State and prove  reciprocity law.

                      

        [OR]

       b) Write a note on partitions.                                                                                    

         (5)

       c) Derive a generating function for  partitions. 

                                

[OR]

       d) State and prove Euler’s pentagonal-number theorem                                                                    (15)
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